Navy Looking Create New Marine GMOs To Detect Enemy Subs

Please Share This Story!
The Naval Research Laboratory has too many Technocrats with too much time on their hands. Still, this project points out that genetic modification is going on in every possible environment on the earth. What could go wrong? ⁃ TN Editor

The Pentagon is also looking at living camouflage, self-healing paint, and a variety of other applications of engineered organisms, but the basic science remains a challenge.

How do you detect submarines in an expanse as large as the ocean? The U.S. military hopes that common marine microorganisms might be genetically engineered into living tripwires to signal the passage of enemy subs, underwater vessels, or even divers.

It’s one of many potential military applications for so-called engineered organisms, a field that promises living camouflage that reacts to its surroundings to better avoid detection, new drugs and medicines to help deployed forces survive in harsh conditions, and more. But the research is in its very early stages, military officials said.

The Naval Research Laboratory, or NRL, is supporting the research. Here’s how it would work: You take an abundant sea organism, like Marinobacter, and change its genetic makeup to react to certain substances left by enemy vessels, divers, or equipment. These could be metals, fuel exhaust, human DNA, or some molecule that’s not found naturally in the ocean but is associated with, say, diesel-powered submarines. The reaction could take the form of electron loss, which could be detectable to friendly sub drones.

“In an engineered context, we might take the ability of the microbes to give up electrons, then use [those electrons] to talk to something like an autonomous vehicle. Then you can start imagining that you can create an electrical signal when the bacteria encounters some molecule in their environment,” NRL researcher Sarah Glaven said at a November event put on by the Johns Hopkins University’s Applied Physics Lab.

Glaven believes the research is about a year away from providing concrete evidence that she can engineer reactions in abundant marine life forms that could prove useful for the military. Sub-hunting, in particular, is “what we would like it to be applicable for,” she said.

“The reason we think we can accomplish this is because we have this vast database of info we’ve collected from growing these natural systems. So after experiments where we look at switching gene potential, gene expression, regulatory networks, we are finding these sensors,” said Glaven.

Geneticists have already shown that it’s possible to manipulate the genes of E. colibacteria to exhibit all sorts of properties that might be useful for sub sensing. But, in synthetic biology, E.coli are similar to lab mice in conventional medical research: they’re abundant, cheap, and easy to work with, but their real-world relevance is limited. What works in E. coli, or in lab mice, doesn’t always work in other organisms and you just don’t find them in the sorts of places you would want to detect submarines.

There’s currently a $45 million effort across the Army, Navy and Air Force, dubbed the Applied Research for the Advancement of Science and Technology Priorities Program on Synthetic Biology for Military Environments, aimed at giving researchers the tools they need to engineer genetic responses into organisms that would be useful for the military.

Read full story here…

Join our mailing list!

Notify of